Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A High Efficiency Magnetic Activated Sludge Reactor for Wastewater Processing

1999-07-12
1999-01-1945
Technologies for the recycling of water are a primary goal of NASA’s advanced life support programs. Biological processes have been identified as an attractive method for wastewater processing. A fundamental new bioreactor based on a traditional activated sludge process is demonstrated that treats hygiene wastewater using magnetic iron oxide particles agglomerated with microbial cells. In this bioreactor, microbes are suspended in magnetic flocs in a wastewater medium. Instead of a traditional gravity separator used in activated sludge operations, a magnetic separator removes the microbial flocs from the outlet stream. The reactor separation operates continuously, independent of gravitational influences. The reactor has been able to simultaneously remove 98% of high levels of both nitrogenous and organic carbon impurities from the wastewater as well as achieve acceptably low levels of total suspended solids.
Journal Article

A Freezable Heat Exchanger for Space Suit Radiator Systems

2008-06-29
2008-01-2111
During an ExtraVehicular Activity (EVA), both the heat generated by the astronaut's metabolism and that produced by the Portable Life Support System (PLSS) must be rejected to space. The heat sources include the heat of adsorption of metabolic CO2, the heat of condensation of water, the heat removed from the body by the liquid cooling garment, the load from the electrical components and incident radiation. Although the sublimator hardware to reject this load weighs only 1.58 kg (3.48 lbm), an additional 3.6 kg (8 lbm) of water are loaded into the unit, most of which is sublimated and lost to space, thus becoming the single largest expendable during an eight-hour EVA. Using a radiator to reject heat from the astronaut during an EVA can reduce the amount of expendable water consumed in the sublimator. Radiators have no moving parts and are thus simple and highly reliable. However, past freezable radiators have been too heavy.
X